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A nonstationary solution is obtained for the diffusion equation in the
case of two gas containers of arbitrary volume, comnected by a cap-
illary. If the volume of the capillary is regarded as negligibly small
in comparison with the flask volumes, the solution turns into the for-
mula derived by Ney and Armsteady, and as the volume of one of the
flasks approaches infinity, the solution turns into the one derived by
Frank-Kamenetskii.

To measure the coefficients of mutual diffusion in
gases, we make extensive use of the method in which
two pistons are connected to each other by means of
a wide capillary. The experimental data are processed
according to theoretical formulas in whose derivation
it is assumed that the volume of the capillary is sub-
stantially smaller than the volumes containing the
subject gases, while a concentration gradient exists
only within the capillary and is a function exclusively
of time. However, to evaluate the accuracy of the
experimental data, as well as for experimental in-
stallations exhibiting a volume ratio that is none too
small, it is desirable to have an exact solution to the
problem. Such a solution would make it possible also
to evaluate the time required to establish a quasi-
steady state in these or similar experimental installa-
tions.

Let us examine the process of diffusion through a
capillary connecting two vessels of volumes V, and
Vy, which have been filled with a mixture of gases of
differing composition at identical temperatures and
pressures. As a result of diffusion, the concentrations
of the gasesin the flasks will even out with the passage
of time. This problem was solved by Ney and Arm-
stead [1] under the above-cited assumptions. Their
solution has the form
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Assuming that the diffusion factor is independent
of concentration, and that the diffusion is not com-
plicated by hydrodynamic transport, the solution of
the stated problem in the one-dimensional case re-
duces to the solution of the equation

o on @)
having the following initial and boundary conditions:
I.c=c¢y when ¢=0 and 0<<x<L,

¢ =¢y wWhen { =0 and x=0;

. oL B & when x=L;
of V. ox

dc Ds oc
. —= =-— -— when x=0.
oV, ox o0
Conditions 2 and 3 correspond to the fact that the
concentration of the gas at the end of the tube is equal
to the concentration in the flask. We will solve the
problem by means of an operator. Tt has the form
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Ly are the roots of the characteristic equation,
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It would be interesting to investigate the case in
which Vy — «, while the concentration of the subject
gas when x = 0 is equal to zero at any instant of time.
Under these conditions, solution (3) is written in the
form '
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Formula (5) may be used to analyze the experimen-
tal data for the diffusion of a gas from some volume
through capillaries into an unbounded medium filled
with another gas.

We will reduce the derived solution (3) to a form
convenient for practical utilization. For this purpose
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we will assume that the volume of the capillary is con-

siderably smaller than the volume of flask 1, i.e.,
&€ « 1. Under this condition, neglecting terms with
€2, we can write relation (4) in the form
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For small values of &, tgu; can be replaced by p
so that from expression (6) we obtain
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The remaining approximate values of u, can be found
from the relationship

po=— Nt NtV L 03w
W Vs
The expression being summed in Eq. (3) is ex-
panded into a series in powers of € and we will limit
ourselves to terms of the first order of smallness.
Having carried out the necessary calculations and
having isolated the term with n = 1, we obtain
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where k =n - 1.

If the concentration of the subject gas in flask 2
(when x = 0) is denoted cy(t), solution (7) assumes the
form
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The first term in this equation describes the quasi-
steady process, while all of the remaining terms
after the summation sign are significant only at the
initial instant of time and are associated with the es-
tablishment of the quasi-steady state in the capillary.
If we treat the volume of the capillary as negligibly
small in comparison with the volumes of the flasks
and if we exclude those terms describing the transfer
process, we obtain the familiar solution (1). Equation
(2) makes it possible to evaluate the correction factors
which can subsequently be used to refine the data de-
rived from formula (1).

For the case in which V; ~ =, while the concen-
tration of the gas at the end of the capillary (when x =
= 0) is equal to zero, for any instant of time from Eq.
(7) we obtain

a(f) e Ds
= | 4 — — |+
Coy ( * 6) P [ Lv, ]

\ i 2 _ (Rw\?
+/§1( D exp[ (L>Dt], (9)

where cy(t) is the concentration of the subject gas in
flask 1 (when x = L).

Solution (9) (approximate method) was derived by
Frank-Kamenetskii [2] and is used to analyze the dif-
fusion of one gas through a capillary into a volume
filled with another gas. This solution is easily derived
from the exact solution (5) by expansion into series
in powers of €, limiting ourselves to terms of the
first order of smallness.
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NOTATION

Cpz» Cy(t), and ¢® are the concentrations of the gas
under study in bulb 2 at time t and after final mixing;
D is the diffusion coefficient; s is the capillary cross-
section; L is the capillary length; & is the ratio of the
volume of the capillary to the volume of bulb 1.
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